Clustering text

Nisheeth

Overview

- Quickly review clustering
 - Emphasizing cluster quality assessment
- Introduce plate notation
- Introduce text clustering algorithms
- Focus on LDA
- Useful reading: MC Burton's intro to topic modeling
 - http://mcburton.net/blog/joy-of-tm/

K means clustering

- Exclusive clustering approach
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- Number of clusters, K, must be specified
- The basic algorithm is very simple
- 1: Select K points as the initial centroids.
- 2: repeat
- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.
- 5: **until** The centroids don't change

DBSCAN algorithm

- Eliminate noise points
- Perform clustering on the remaining points

 $current_cluster_label \leftarrow 1$

for all core points \mathbf{do}

 ${\bf if}$ the core point has no cluster label ${\bf then}$

 $current_cluster_label \leftarrow current_cluster_label + 1$

Label the current core point with cluster label $current_cluster_label$ end if

for all points in the Eps-neighborhood, except i^{th} the point itself do

 ${\bf if}$ the point does not have a cluster label ${\bf then}$

Label the point with cluster label *current_cluster_label*

end if

end for

end for

Good result

Bad result

Quantifying clustering quality

- Cluster Cohesion: Measures how closely related are objects in a cluster
 - Example: SSE
- Cluster Separation: Measures how distinct or well-separated a cluster is from other clusters
- Example: Squared Error
 - Cohesion is measured by the within cluster sum of squares (SSE)

$$WSS = \sum_{i} \sum_{x \in C_i} (x - m_i)^2$$

- Separation is measured by the between cluster sum of squares

$$BSS = \sum_{i} |C_{i}| (m - m_{i})^{2}$$

Where |C_i| is the size of cluster i

Quantifying clustering quality

Cluster	Entertainment	Financial	Foreign	Metro	National	Sports	Entropy	Purity
1	3	5	40	506	96	27	1.2270	0.7474
2	4	7	280	29	39	2	1.1472	0.7756
3	1	1	1	7	4	671	0.1813	0.9796
4	10	162	3	119	73	2	1.7487	0.4390
5	331	22	5	70	13	23	1.3976	0.7134
6	5	358	12	212	48	13	1.5523	0.5525
Total	354	555	341	943	273	738	1.1450	0.7203

Table 5.9. K-means Clustering Results for LA Document Data Set

- entropy For each cluster, the class distribution of the data is calculated first, i.e., for cluster j we compute p_{ij} , the 'probability' that a member of cluster j belongs to class i as follows: $p_{ij} = m_{ij}/m_j$, where m_j is the number of values in cluster j and m_{ij} is the number of values of class i in cluster j. Then using this class distribution, the entropy of each cluster j is calculated using the standard formula $e_j = \sum_{i=1}^{L} p_{ij} \log_2 p_{ij}$, where the L is the number of classes. The total entropy for a set of clusters is calculated as the sum of the entropies of each cluster j, K is the number of clusters, and m is the total number of data points.
- **purity** Using the terminology derived for entropy, the purity of cluster j, is given by $purity_j = \max p_{ij}$ and the overall purity of a clustering by $purity = \sum_{i=1}^{K} \frac{m_i}{m} purity_j$.

What does the model tell you?

With some probability, pick a Gaussian

With some probability, pick a point from the Gaussian

Shift to plate notation

Coin toss example

- Say you toss a coin N times
- You want to figure out its bias
- Bayesian approach
 - Find the generative model
 - Each toss ~ Bern(θ)
 - $\theta \sim \text{Beta}(\alpha,\beta)$
- Draw the generative model in plate notation

Plate notation

- Random variables as circles
- Parameters, fixed values as squares
- Repetitions of conditional probability structures as rectangular 'plates'
- *Switch* conditioning as squiggles
- Random variables observed in practice are shaded

Conjugacy

- Algebraic convenience in Bayesian updating
- Posterior \leftarrow Prior x Likelihood
- We want the distributions to be parametric, the parameter is what is learned
 - we want the posterior to have the same parametric form as the prior
 - Conjugate prior = f(.) such that $f(\theta)g(x|\theta) \sim f(\theta^{new})$

Useful conjugate priors

likelihood	conjugate prior	posterior		
$p(x \mid \theta)$	$p_0(heta)$	$p(\theta \mid x)$		
Normal (θ, σ)	Normal (μ_0, σ_0)	Normal (μ_1, σ_1)		
Binomial (N, θ)	Beta (r, s)	Beta $(r + n, s + N - n)$		
Poisson (θ)	Gamma (r, s)	$\operatorname{Gamma}\left(r+n,s+1 ight)$		
Multinomial $(\theta_1, \ldots, \theta_k)$	Dirichlet $(\alpha_1, \ldots, \alpha_k)$	Dirichlet $(\alpha_1 + n_1, \ldots, \alpha_k + n_k)$		

This one is important for

US

Remember the query-Likelihood model?

- Rank documents by the probability that the query could be generated by the document model (i.e. same topic)
- Given query, start with P(D|Q)
- Using Bayes' Rule $p(D|Q) \stackrel{rank}{=} P(Q|D)P(D)$
- Assuming prior is uniform, unigram model Π^n

 $P(Q|D) = \prod_{i=1}^{n} P(q_i|D)$

 Alternative formulation: multinomial unigram model

$$P(Q|D) = \prod_{i=1}^{n} P(q_i|D)^{tf(q_i,q)}$$

Multinomial unigram model

- Each word assumed generated from a single multinomial distribution
- In plate notation

$$p(\boldsymbol{w}) = \prod_{i=1}^{n} p(w_i)$$

• Probabilistic alternative to tf.idf

Going beyond tf.idf in text processing

Mixture of unigrams

- Document label generated from a topic
- Words generated from topic-specific word distributions
- Strong assumption: one document generated from one topic only

$$p(\boldsymbol{w}) = \sum_{t} p(t) \prod_{i=1}^{|d|} p(w_i|t)$$

Probabilistic latent semantic analysis

- Assume topics are drawn from documents
- Assume words are drawn from topics

$$p(d, \mathbf{w}) = p(d) \sum_{t} \prod_{i=1}^{|d|} p(w_i|t) p(t|d)$$

Problem of PLSI

- Mixture weights are considered as document specific, thus no natural way to assign probability to a previously unseen document.
- Number of parameters to be estimated grows linearly with size of training set
 - overfits data
 - multiple local maxima.
- Not a fully generative model of documents.

Latent Dirichlet allocation

- LDA is a generative probabilistic model of a corpus.
 - Documents are considered random mixtures over latent topics
 - Topic are characterized by a distribution over words.

