Clustering text

Nisheeth

Overview

- Quickly review clustering
- Emphasizing cluster quality assessment
- Introduce plate notation
- Introduce text clustering algorithms
- Focus on LDA
- Useful reading: MC Burton's intro to topic modeling
- http://mcburton.net/blog/joy-of-tm/

K means clustering

- Exclusive clustering approach
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- Number of clusters, K, must be specified
- The basic algorithm is very simple

1: Select K points as the initial centroids.
2: repeat
3: Form K clusters by assigning all points to the closest centroid.
4: Recompute the centroid of each cluster.
5: until The centroids don't change

DBSCAN algorithm

- Eliminate noise points
- Perform clustering on the remaining points

```
current_cluster_label }\leftarrow
for all core points do
    if the core point has no cluster label then
        current_cluster_label }\leftarrow\mathrm{ current_cluster_label + 1
    Label the current core point with cluster label current_cluster_label
    end if
    for all points in the Eps-neighborhood, except i th the point itself do
        if the point does not have a cluster label then
            Label the point with cluster label current_cluster_label
        end if
    end for
end for
```


Good result

Bad result

Quantifying clustering quality

- Cluster Cohesion: Measures how closely related are objects in a cluster
- Example: SSE
- Cluster Separation: Measures how distinct or well-separated a cluster is from other clusters
- Example: Squared Error
- Cohesion is measured by the within cluster sum of squares (SSE)

$$
W S S=\sum_{i} \sum_{x \in C_{i}}\left(x-m_{i}\right)^{2}
$$

- Separation is measured by the between cluster sum of squares

$$
\begin{array}{r}
B S S=\sum_{i}\left|C_{i}\right|\left(m-m_{i}\right)^{2} \\
\text { Where }\left|c_{i}\right| \text { is the size of cluster } \mathrm{i}
\end{array}
$$

Quantifying clustering quality

Table 5.9. K-means Clustering Results for LA Document Data Set

Cluster	Entertainment	Financial	Foreign	Metro	National	Sports	Entropy	Purity
1	3	5	40	506	96	27	1.2270	0.7474
2	4	7	280	29	39	2	1.1472	0.7756
3	1	1	1	7	4	671	0.1813	0.9796
4	10	162	3	119	73	2	1.7487	0.4390
5	331	22	5	70	13	23	1.3976	0.7134
6	5	358	12	212	48	13	1.5523	0.5525
Total	354	555	341	943	273	738	1.1450	0.7203

entropy For each cluster, the class distribution of the data is calculated first, i.e., for cluster j we compute $p_{i j}$, the 'probability' that a member of cluster j belongs to class i as follows: $p_{i j}=m_{i j} / m_{j}$, where m_{j} is the number of values in cluster j and $m_{i j}$ is the number of values of class i in cluster j. Then using this class distribution, the entropy of each cluster j is calculated using the standard formula $e_{j}=\sum_{i=1}^{L} p_{i j} \log _{2} p_{i j}$, where the L is the number of classes. The total entropy for a set of clusters is calculated as the sum of the entropies of each cluster weighted by the size of each cluster, i.e., $e=\sum_{i=1}^{K} \frac{m_{i}}{m} e_{j}$, where m_{j} is the size of cluster j, K is the number of clusters, and m is the total number of data points.
purity Using the terminology derived for entropy, the purity of cluster j, is given by purity ${ }_{j}=$ $\max p_{i j}$ and the overall purity of a clustering by purity $=\sum_{i=1}^{K} \frac{m_{i}}{m}$ purity $_{j}$.

What does the model tell you?

With some probability, pick a Gaussian

With some probability, pick a point from the Gaussian

Shift to plate notation

Coin toss example

- Say you toss a coin N times
- You want to figure out its bias
- Bayesian approach
- Find the generative model
- Each toss ~Bern (θ)
- θ ~ Beta (α, β)
- Draw the generative model in plate notation

Plate notation

- Random variables as circles
- Parameters, fixed values as squares
- Repetitions of conditional probability structures as rectangular 'plates'
- Switch conditioning as squiggles
- Random variables observed in practice are shaded

Conjugacy

- Algebraic convenience in Bayesian updating
- Posterior \leftarrow Prior x Likelihood
- We want the distributions to be parametric, the parameter is what is learned
- we want the posterior to have the same parametric form as the prior
- Conjugate prior $=f($.$) such that f(\theta) g(x \mid \theta) \sim f\left(\theta^{\text {new }}\right)$

Useful conjugate priors

likelihood	conjugate prior	posterior
$p(x \mid \theta)$	$p_{0}(\theta)$	$p(\theta \mid x)$
Normal (θ, σ)	Normal $\left(\mu_{0}, \sigma_{0}\right)$	Normal $\left(\mu_{1}, \sigma_{1}\right)$
Binomial (N, θ)	Beta (r, s)	Beta $(r+n, s+N-n)$
Poisson (θ)	Gamma (r, s)	Gamma $(r+n, s+1)$
Multinomial $\left(\theta_{1}, \ldots, \theta_{k}\right)$	Dirichlet $\left(\alpha_{1}, \ldots, \alpha_{k}\right)$	Dirichlet $\left(\alpha_{1}+n_{1}, \ldots, \alpha_{k}+n_{k}\right)$

This one is important for

Remember the query-Likelihood model?

- Rank documents by the probability that the query could be generated by the document model (i.e. same topic)
- Given query, start with $P(D \mid Q)$
- Using Bayes' Rule

$$
p(D \mid Q) \stackrel{r a n k}{=} P(Q \mid D) P(D)
$$

- Assuming prior is uniform, unigram model

$$
P(Q \mid D)=\prod_{i=1}^{n} P\left(q_{i} \mid D\right)
$$

- Alternative formulation: multinomial unigram model

$$
P(Q \mid D)=\prod_{i=1}^{n} P\left(q_{i} \mid D\right)^{t f\left(q_{i}, q\right)}
$$

Multinomial unigram model

- Each word assumed generated from a single multinomial distribution
- In plate notation

- Probabilistic alternative to tf.idf

Going beyond tf.idf in text processing

Mixture of unigrams

- Document label generated from a topic
- Words generated from topic-specific word distributions
- Strong assumption: one document generated from one topic only

Probabilistic latent semantic analysis

- Assume topics are drawn from documents
- Assume words are drawn from topics

$$
p(d, \boldsymbol{w})=p(d) \sum_{t} \prod_{i=1}^{|d|} p\left(w_{i} \mid t\right) p(t \mid d)
$$

Problem of PLSI

- Mixture weights are considered as document specific, thus no natural way to assign probability to a previously unseen document.
- Number of parameters to be estimated grows linearly with size of training set
- overfits data
- multiple local maxima.
- Not a fully generative model of documents.

Latent Dirichlet allocation

- LDA is a generative probabilistic model of a corpus.
- Documents are considered random mixtures over latent topics
- Topic are characterized by a distribution over words.

LDA in plate notation

